Blog¤
Blog Feedback [1] is a dataset containing 54,270 data points from blog
posts. The raw HTML-documents of the blog posts were crawled and
processed. The prediction task associated with the data is the
prediction of the number of comments in the upcoming 24 hours. The
feature of the dataset has 276 dimensions, and 8 attributes among them
should be monotonically non-decreasing with the prediction. They are
A51, A52, A53, A54, A56, A57, A58, A59. Thus the
monotonicity_indicator corrsponding to these features are set to 1. As
done in [2], we only use the data points with targets smaller than the
90th percentile.
References:
- Krisztian Buza. Feedback prediction for blogs. In Data analysis, machine learning and knowledge discovery, pages 145–152. Springer, 2014
- Xingchao Liu, Xing Han, Na Zhang, and Qiang Liu. Certified monotonic neural networks. Advances in Neural Information Processing Systems, 33:15427–15438, 2020
monotonicity_indicator = {
f"feature_{i}": 1 if i in range(50, 54) or i in range(55, 59) else 0
for i in range(276)
}
Running in Google Colab¤
These are a few examples of the dataset:
| 0 | 1 | 2 | 3 | 4 | |
|---|---|---|---|---|---|
| feature_0 | 0.001920 | 0.001920 | 0.000640 | 0.001920 | 0.001920 |
| feature_1 | 0.001825 | 0.001825 | 0.001825 | 0.000000 | 0.000000 |
| feature_2 | 0.002920 | 0.002920 | 0.000000 | 0.001460 | 0.001460 |
| feature_3 | 0.001627 | 0.001627 | 0.000651 | 0.001627 | 0.001627 |
| feature_4 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_5 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_6 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_7 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_8 | 0.035901 | 0.035901 | 0.035901 | 0.035901 | 0.035901 |
| feature_9 | 0.096250 | 0.096250 | 0.096250 | 0.096250 | 0.096250 |
| feature_10 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_11 | 0.196184 | 0.196184 | 0.196184 | 0.196184 | 0.196184 |
| feature_12 | 0.011416 | 0.011416 | 0.011416 | 0.011416 | 0.011416 |
| feature_13 | 0.035070 | 0.035070 | 0.035070 | 0.035070 | 0.035070 |
| feature_14 | 0.090234 | 0.090234 | 0.090234 | 0.090234 | 0.090234 |
| feature_15 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_16 | 0.264747 | 0.264747 | 0.264747 | 0.264747 | 0.264747 |
| feature_17 | 0.005102 | 0.005102 | 0.005102 | 0.005102 | 0.005102 |
| feature_18 | 0.032064 | 0.032064 | 0.032064 | 0.032064 | 0.032064 |
| feature_19 | 0.089666 | 0.089666 | 0.089666 | 0.089666 | 0.089666 |
| feature_20 | 0.264747 | 0.264747 | 0.264747 | 0.264747 | 0.264747 |
| feature_21 | 0.003401 | 0.003401 | 0.003401 | 0.003401 | 0.003401 |
| feature_22 | 0.031368 | 0.031368 | 0.031368 | 0.031368 | 0.031368 |
| feature_23 | 0.083403 | 0.083403 | 0.083403 | 0.083403 | 0.083403 |
| feature_24 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_25 | 0.195652 | 0.195652 | 0.195652 | 0.195652 | 0.195652 |
| feature_26 | 0.009302 | 0.009302 | 0.009302 | 0.009302 | 0.009302 |
| feature_27 | 0.068459 | 0.068459 | 0.068459 | 0.068459 | 0.068459 |
| feature_28 | 0.085496 | 0.085496 | 0.085496 | 0.085496 | 0.085496 |
| feature_29 | 0.716561 | 0.716561 | 0.716561 | 0.716561 | 0.716561 |
| feature_30 | 0.265120 | 0.265120 | 0.265120 | 0.265120 | 0.265120 |
| feature_31 | 0.419453 | 0.419453 | 0.419453 | 0.419453 | 0.419453 |
| feature_32 | 0.120206 | 0.120206 | 0.120206 | 0.120206 | 0.120206 |
| feature_33 | 0.345656 | 0.345656 | 0.345656 | 0.345656 | 0.345656 |
| feature_34 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_35 | 0.366667 | 0.366667 | 0.366667 | 0.366667 | 0.366667 |
| feature_36 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_37 | 0.126985 | 0.126985 | 0.126985 | 0.126985 | 0.126985 |
| feature_38 | 0.226342 | 0.226342 | 0.226342 | 0.226342 | 0.226342 |
| feature_39 | 0.375000 | 0.375000 | 0.375000 | 0.375000 | 0.375000 |
| feature_40 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_41 | 0.125853 | 0.125853 | 0.125853 | 0.125853 | 0.125853 |
| feature_42 | 0.224422 | 0.224422 | 0.224422 | 0.224422 | 0.224422 |
| feature_43 | 0.375000 | 0.375000 | 0.375000 | 0.375000 | 0.375000 |
| feature_44 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_45 | 0.114587 | 0.114587 | 0.114587 | 0.114587 | 0.114587 |
| feature_46 | 0.343826 | 0.343826 | 0.343826 | 0.343826 | 0.343826 |
| feature_47 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_48 | 0.384615 | 0.384615 | 0.384615 | 0.384615 | 0.384615 |
| feature_49 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_50 | 0.108675 | 0.108675 | 0.108675 | 0.108675 | 0.108675 |
| feature_51 | 0.195570 | 0.195570 | 0.195570 | 0.195570 | 0.195570 |
| feature_52 | 0.600000 | 0.600000 | 0.600000 | 0.600000 | 0.600000 |
| feature_53 | 0.391304 | 0.391304 | 0.391304 | 0.391304 | 0.391304 |
| feature_54 | 0.333333 | 0.333333 | 0.333333 | 0.333333 | 0.333333 |
| feature_55 | 0.516725 | 0.516725 | 0.518486 | 0.516725 | 0.516725 |
| feature_56 | 0.550000 | 0.550000 | 0.550000 | 0.550000 | 0.550000 |
| feature_57 | 0.486111 | 0.486111 | 0.138889 | 0.819444 | 0.819444 |
| feature_58 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_59 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_60 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_61 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_62 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_63 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_64 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_65 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_66 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_67 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_68 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_69 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_70 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_71 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_72 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_73 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_74 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_75 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_76 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_77 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_78 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_79 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_80 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_81 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_82 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_83 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_84 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_85 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_86 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_87 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_88 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_89 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_90 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_91 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_92 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_93 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_94 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_95 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_96 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_97 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_98 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_99 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_100 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_101 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_102 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_103 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_104 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_105 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_106 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_107 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_108 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_109 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_110 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_111 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_112 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_113 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_114 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_115 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_116 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_117 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_118 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_119 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_120 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_121 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_122 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_123 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_124 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_125 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_126 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_127 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_128 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_129 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_130 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_131 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_132 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_133 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_134 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_135 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_136 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_137 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_138 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_139 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_140 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_141 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_142 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_143 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_144 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_145 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_146 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_147 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_148 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_149 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_150 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_151 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_152 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_153 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_154 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_155 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_156 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_157 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_158 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_159 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_160 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_161 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_162 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_163 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_164 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_165 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_166 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_167 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_168 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_169 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_170 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_171 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_172 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_173 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_174 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_175 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_176 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_177 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_178 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_179 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_180 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_181 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_182 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_183 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_184 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_185 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_186 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_187 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_188 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_189 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_190 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_191 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_192 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_193 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_194 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_195 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_196 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_197 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_198 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_199 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_200 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_201 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_202 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_203 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_204 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_205 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_206 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_207 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_208 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_209 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_210 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_211 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_212 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_213 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_214 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_215 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_216 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_217 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_218 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_219 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_220 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_221 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_222 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_223 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_224 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_225 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_226 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_227 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_228 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_229 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_230 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_231 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_232 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_233 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_234 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_235 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_236 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_237 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_238 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_239 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_240 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_241 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_242 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_243 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_244 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_245 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_246 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_247 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_248 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_249 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_250 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_251 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_252 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_253 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_254 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_255 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_256 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_257 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_258 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_259 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_260 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_261 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_262 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_263 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 |
| feature_264 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 |
| feature_265 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_266 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_267 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_268 | 1.000000 | 1.000000 | 0.000000 | 1.000000 | 1.000000 |
| feature_269 | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 0.000000 |
| feature_270 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_271 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_272 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_273 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_274 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| feature_275 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| ground_truth | 0.000000 | 0.000000 | 0.125000 | 0.000000 | 0.000000 |
Hyperparameter search¤
The choice of the batch size and the maximum number of epochs depends on the dataset size. For this dataset, we use the following values:
batch_size = 256
max_epochs = 30
We use the Type-2 architecture built using
MonoDense
layer with the following set of hyperparameters ranges:
def hp_params_f(hp):
return dict(
units=hp.Int("units", min_value=16, max_value=32, step=1),
n_layers=hp.Int("n_layers", min_value=2, max_value=2),
activation=hp.Choice("activation", values=["elu"]),
learning_rate=hp.Float(
"learning_rate", min_value=1e-4, max_value=1e-2, sampling="log"
),
weight_decay=hp.Float(
"weight_decay", min_value=3e-2, max_value=0.3, sampling="log"
),
dropout=hp.Float("dropout", min_value=0.0, max_value=0.5, sampling="linear"),
decay_rate=hp.Float(
"decay_rate", min_value=0.8, max_value=1.0, sampling="reverse_log"
),
)
The following fixed parameters are used to build the Type-2 architecture for this dataset:
-
final_activationis used to build the final layer for regression problem (set toNone) or for the classification problem ("sigmoid"), -
lossis used for training regression ("mse") or classification ("binary_crossentropy") problem, and -
metricsdenotes metrics used to compare with previosly published results:"accuracy"for classification and “mse” or “rmse” for regression.
Parameters objective and direction are used by the tuner such that
objective=f"val_{metrics}" and direction is either "min or "max".
Parameters max_trials denotes the number of trial performed buy the
tuner, patience is the number of epochs allowed to perform worst than
the best one before stopping the current trial. The parameter
execution_per_trial denotes the number of runs before calculating the
results of a trial, it should be set to value greater than 1 for small
datasets that have high variance in results.
final_activation = None
loss = "mse"
metrics = tf.keras.metrics.RootMeanSquaredError()
objective = "val_root_mean_squared_error"
direction = "min"
max_trials = 50
executions_per_trial = 1
patience = 10
The following table describes the best models and their hyperparameters found by the tuner:
The optimal model¤
These are the best hyperparameters found by previous runs of the tuner:
def final_hp_params_f(hp):
return dict(
units=hp.Fixed("units", value=4),
n_layers=hp.Fixed("n_layers", 2),
activation=hp.Fixed("activation", value="elu"),
learning_rate=hp.Fixed("learning_rate", value=0.01),
weight_decay=hp.Fixed("weight_decay", value=0.0),
dropout=hp.Fixed("dropout", value=0.0),
decay_rate=hp.Fixed("decay_rate", value=0.95),
)
The final evaluation of the optimal model:
| 0 | |
|---|---|
| units | 4 |
| n_layers | 2 |
| activation | elu |
| learning_rate | 0.010000 |
| weight_decay | 0.000000 |
| dropout | 0.000000 |
| decay_rate | 0.950000 |
| val_root_mean_squared_error_mean | 0.154109 |
| val_root_mean_squared_error_std | 0.000568 |
| val_root_mean_squared_error_min | 0.153669 |
| val_root_mean_squared_error_max | 0.154894 |
| params | 1665 |