Monotonic dense layer¤
Imports¤
from os import environ
from pathlib import Path
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import pytest
import seaborn as sns
from tensorflow.keras import Model
from tensorflow.keras.layers import Input
environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
Monotonic Dense Layer¤
Actvation Functions¤
We use \(\breve{\mathcal{A}}\) to denote the set of all zero-centred, monotonically increasing, convex, lower-bounded functions.
Let \(\breve{\rho} \in \breve{\mathcal{A}}\). Then
In the code below, the following names are used for denotation of the above functions:
-
convex_activationdenotes \(\breve{\rho}\), -
concave_activationdenotes \(\hat{\rho}\), and -
saturated_activationdenotes \(\tilde{\rho}\).
get_activation_functions¤
get_activation_functions (activation:Union[str,Callable[[Union[tensorflow .python.types.core.Tensor,tensorflow.python.typ es.core.TensorProtocol,int,float,bool,str,bytes ,complex,tuple,list,numpy.ndarray,numpy.generic ]],Union[tensorflow.python.types.core.Tensor,te nsorflow.python.types.core.TensorProtocol,int,f loat,bool,str,bytes,complex,tuple,list,numpy.nd array,numpy.generic]],NoneType]=None)
get_saturated_activation¤
get_saturated_activation (convex_activation:Callable[[Union[tensorflow.py thon.types.core.Tensor,tensorflow.python.types. core.TensorProtocol,int,float,bool,str,bytes,co mplex,tuple,list,numpy.ndarray,numpy.generic]], Union[tensorflow.python.types.core.Tensor,tenso rflow.python.types.core.TensorProtocol,int,floa t,bool,str,bytes,complex,tuple,list,numpy.ndarr ay,numpy.generic]], concave_activation:Callable [[Union[tensorflow.python.types.core.Tensor,ten sorflow.python.types.core.TensorProtocol,int,fl oat,bool,str,bytes,complex,tuple,list,numpy.nda rray,numpy.generic]],Union[tensorflow.python.ty pes.core.Tensor,tensorflow.python.types.core.Te nsorProtocol,int,float,bool,str,bytes,complex,t uple,list,numpy.ndarray,numpy.generic]], a:float=1.0, c:float=1.0)
apply_activations¤
apply_activations (x:Union[tensorflow.python.types.core.Tensor,tensorflow .python.types.core.TensorProtocol,int,float,bool,str,b ytes,complex,tuple,list,numpy.ndarray,numpy.generic], units:int, convex_activation:Callable[[Union[tensorflo w.python.types.core.Tensor,tensorflow.python.types.cor e.TensorProtocol,int,float,bool,str,bytes,complex,tupl e,list,numpy.ndarray,numpy.generic]],Union[tensorflow. python.types.core.Tensor,tensorflow.python.types.core. TensorProtocol,int,float,bool,str,bytes,complex,tuple, list,numpy.ndarray,numpy.generic]], concave_activation :Callable[[Union[tensorflow.python.types.core.Tensor,t ensorflow.python.types.core.TensorProtocol,int,float,b ool,str,bytes,complex,tuple,list,numpy.ndarray,numpy.g eneric]],Union[tensorflow.python.types.core.Tensor,ten sorflow.python.types.core.TensorProtocol,int,float,boo l,str,bytes,complex,tuple,list,numpy.ndarray,numpy.gen eric]], saturated_activation:Callable[[Union[tensorflo w.python.types.core.Tensor,tensorflow.python.types.cor e.TensorProtocol,int,float,bool,str,bytes,complex,tupl e,list,numpy.ndarray,numpy.generic]],Union[tensorflow. python.types.core.Tensor,tensorflow.python.types.core. TensorProtocol,int,float,bool,str,bytes,complex,tuple, list,numpy.ndarray,numpy.generic]], is_convex:bool=False, is_concave:bool=False, activation_weights:Tuple[float,float,float]=(7.0, 7.0, 2.0))
def plot_applied_activation(
activation: str = "relu",
*,
save_pdf: bool = False,
save_path: Union[Path, str] = "plots",
font_size: int = 20,
linestyle="--",
alpha=0.7,
linewidth=2.0,
):
font = {"size": font_size}
matplotlib.rc("font", **font)
plt.rcParams["figure.figsize"] = (18, 3)
x = np.arange(-1.5, 1.5, step=3 / 256)
h = 3 * np.sin(2 * np.pi * x)
(
convex_activation,
concave_activation,
saturated_activation,
) = get_activation_functions(activation)
y = apply_activations(
h,
convex_activation=convex_activation,
concave_activation=concave_activation,
saturated_activation=saturated_activation,
units=x.shape[0],
activation_weights=(1.0, 1.0, 1.0),
)
plot_kwargs = dict(linestyle=linestyle, alpha=alpha, linewidth=linewidth)
plt.plot(np.arange(x.shape[0]), h, label="$h$", **plot_kwargs)
plt.plot(np.arange(x.shape[0]), y, label=r"${\rho}(h)$", **plot_kwargs)
title = (
"Applying "
+ (activation.__name__ if hasattr(activation, "__name__") else activation)
+ f"-based activations to {x.shape[0]}-dimensional vector"
+ r" $h$"
)
plt.title(title)
plt.legend()
if save_pdf:
path = Path(save_path) / (title.replace(" ", "_") + ".pdf")
path.parent.mkdir(exist_ok=True, parents=True)
plt.savefig(path, format="pdf")
# print(f"Saved figure to: {path}")
plt.show()
for activation in ["linear", "ReLU", "ELU", "SELU"]:
plot_applied_activation(activation, save_pdf=True)




Monotonicity indicator¤
get_monotonicity_indicator¤
get_monotonicity_indicator (monotonicity_indicator:Union[numpy.__array_li ke._SupportsArray[numpy.dtype],numpy.__nested _sequence._NestedSequence[numpy.__array_like. _SupportsArray[numpy.dtype]],bool,int,float,c omplex,str,bytes,numpy.__nested_sequence._Nes tedSequence[Union[bool,int,float,complex,str, bytes]]], input_shape:Tuple[int,...], units:int)
input_shape = (13, 2)
units = 3
layer = Dense(units=units)
layer.build(input_shape=input_shape)
for monotonicity_indicator in [
1,
[1],
[1, 1],
np.ones((2,)),
np.ones((2, 1)),
np.ones((2, 3)),
]:
expected = np.ones((2, 3))
actual = get_monotonicity_indicator(
monotonicity_indicator, input_shape=(13, 2), units=3
)
# rank is 2
assert len(actual.shape) == 2
# it is broadcastable to the kernel shape of (input_shape[-1], units)
np.testing.assert_array_equal(np.broadcast_to(actual, (2, 3)), expected)
expected = [[1], [0], [-1]]
actual = get_monotonicity_indicator([1, 0, -1], input_shape=(13, 3), units=4)
np.testing.assert_array_equal(actual, expected)
with pytest.raises(ValueError) as e:
get_monotonicity_indicator([0, 1, -1], input_shape=(13, 2), units=3)
assert e.value.args == (
"operands could not be broadcast together with remapped shapes [original->remapped]: (3,1) and requested shape (2,3)",
)
replace_kernel_using_monotonicity_indicator¤
replace_kernel_using_monotonicity_indicator (layer:keras.layers.core.den se.Dense, monotonicity_indic ator:Union[tensorflow.python .types.core.Tensor,tensorflo w.python.types.core.TensorPr otocol,int,float,bool,str,by tes,complex,tuple,list,numpy .ndarray,numpy.generic])
apply_monotonicity_indicator_to_kernel¤
apply_monotonicity_indicator_to_kernel (kernel:tensorflow.python.ops.var iables.Variable, monotonicity_ind icator:Union[numpy.__array_like._ SupportsArray[numpy.dtype],numpy. __nested_sequence._NestedSequence [numpy.__array_like._SupportsArra y[numpy.dtype]],bool,int,float,co mplex,str,bytes,numpy.__nested_se quence._NestedSequence[Union[bool ,int,float,complex,str,bytes]]])
def display_kernel(kernel: Union[tf.Variable, np.typing.NDArray[float]]) -> None:
cm = sns.color_palette("coolwarm_r", as_cmap=True)
df = pd.DataFrame(kernel)
display(
df.style.format("{:.2f}").background_gradient(cmap=cm, vmin=-1e-8, vmax=1e-8)
)
tf.keras.utils.set_random_seed(42)
units = 18
input_len = 7
layer = tf.keras.layers.Dense(units=units)
input_shape = (input_len,)
layer.build(input_shape=input_shape)
print("Original kernel:")
display_kernel(layer.kernel)
print("Kernel after applying monotocity indicator 1 for all values:")
monotonicity_indicator = get_monotonicity_indicator(
1, input_shape=input_shape, units=units
)
with replace_kernel_using_monotonicity_indicator(layer, monotonicity_indicator):
display_kernel(layer.kernel)
Original kernel:
Kernel after applying monotocity indicator 1 for all values:
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.35 | 0.16 | -0.14 | 0.44 | -0.41 | 0.15 | 0.46 | -0.33 | 0.02 | 0.13 | -0.41 | -0.05 | 0.46 | -0.03 | 0.00 | 0.26 | -0.47 | -0.30 |
| 1 | 0.01 | -0.42 | -0.45 | 0.34 | 0.41 | -0.23 | 0.35 | -0.36 | -0.04 | 0.06 | 0.07 | -0.29 | -0.28 | 0.48 | -0.38 | -0.06 | -0.23 | -0.37 |
| 2 | 0.23 | -0.31 | 0.18 | 0.15 | -0.45 | 0.06 | -0.16 | -0.11 | 0.45 | -0.09 | 0.03 | -0.24 | -0.37 | 0.21 | 0.11 | 0.01 | -0.46 | -0.37 |
| 3 | 0.29 | 0.36 | -0.07 | -0.18 | -0.46 | -0.45 | 0.25 | 0.32 | -0.12 | 0.22 | -0.18 | 0.27 | -0.18 | -0.07 | 0.35 | 0.32 | 0.18 | 0.39 |
| 4 | 0.35 | -0.27 | 0.13 | -0.40 | 0.44 | 0.21 | 0.06 | -0.31 | -0.30 | 0.46 | -0.44 | -0.18 | -0.26 | -0.34 | 0.36 | 0.33 | 0.12 | 0.04 |
| 5 | 0.04 | 0.21 | -0.02 | -0.36 | 0.39 | -0.13 | 0.30 | 0.35 | -0.12 | -0.43 | 0.44 | 0.32 | 0.06 | -0.30 | -0.29 | 0.24 | -0.44 | -0.13 |
| 6 | 0.38 | -0.04 | -0.30 | 0.17 | -0.03 | 0.37 | -0.03 | -0.18 | 0.42 | -0.39 | -0.33 | -0.19 | 0.02 | -0.41 | -0.44 | 0.42 | 0.38 | -0.21 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.35 | 0.16 | 0.14 | 0.44 | 0.41 | 0.15 | 0.46 | 0.33 | 0.02 | 0.13 | 0.41 | 0.05 | 0.46 | 0.03 | 0.00 | 0.26 | 0.47 | 0.30 |
| 1 | 0.01 | 0.42 | 0.45 | 0.34 | 0.41 | 0.23 | 0.35 | 0.36 | 0.04 | 0.06 | 0.07 | 0.29 | 0.28 | 0.48 | 0.38 | 0.06 | 0.23 | 0.37 |
| 2 | 0.23 | 0.31 | 0.18 | 0.15 | 0.45 | 0.06 | 0.16 | 0.11 | 0.45 | 0.09 | 0.03 | 0.24 | 0.37 | 0.21 | 0.11 | 0.01 | 0.46 | 0.37 |
| 3 | 0.29 | 0.36 | 0.07 | 0.18 | 0.46 | 0.45 | 0.25 | 0.32 | 0.12 | 0.22 | 0.18 | 0.27 | 0.18 | 0.07 | 0.35 | 0.32 | 0.18 | 0.39 |
| 4 | 0.35 | 0.27 | 0.13 | 0.40 | 0.44 | 0.21 | 0.06 | 0.31 | 0.30 | 0.46 | 0.44 | 0.18 | 0.26 | 0.34 | 0.36 | 0.33 | 0.12 | 0.04 |
| 5 | 0.04 | 0.21 | 0.02 | 0.36 | 0.39 | 0.13 | 0.30 | 0.35 | 0.12 | 0.43 | 0.44 | 0.32 | 0.06 | 0.30 | 0.29 | 0.24 | 0.44 | 0.13 |
| 6 | 0.38 | 0.04 | 0.30 | 0.17 | 0.03 | 0.37 | 0.03 | 0.18 | 0.42 | 0.39 | 0.33 | 0.19 | 0.02 | 0.41 | 0.44 | 0.42 | 0.38 | 0.21 |
monotonicity_indicator = [1] * 2 + [-1] * 2 + [0] * (input_shape[0] - 4)
monotonicity_indicator = get_monotonicity_indicator(
monotonicity_indicator, input_shape=input_shape, units=units
)
print("Monotocity indicator:")
display_kernel(monotonicity_indicator)
print("Kernel after applying the monotocity indicator:")
with replace_kernel_using_monotonicity_indicator(layer, monotonicity_indicator):
display_kernel(layer.kernel)
Monotocity indicator:
Kernel after applying the monotocity indicator:
| 0 | |
|---|---|
| 0 | 1.00 |
| 1 | 1.00 |
| 2 | -1.00 |
| 3 | -1.00 |
| 4 | 0.00 |
| 5 | 0.00 |
| 6 | 0.00 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.35 | 0.16 | 0.14 | 0.44 | 0.41 | 0.15 | 0.46 | 0.33 | 0.02 | 0.13 | 0.41 | 0.05 | 0.46 | 0.03 | 0.00 | 0.26 | 0.47 | 0.30 |
| 1 | 0.01 | 0.42 | 0.45 | 0.34 | 0.41 | 0.23 | 0.35 | 0.36 | 0.04 | 0.06 | 0.07 | 0.29 | 0.28 | 0.48 | 0.38 | 0.06 | 0.23 | 0.37 |
| 2 | -0.23 | -0.31 | -0.18 | -0.15 | -0.45 | -0.06 | -0.16 | -0.11 | -0.45 | -0.09 | -0.03 | -0.24 | -0.37 | -0.21 | -0.11 | -0.01 | -0.46 | -0.37 |
| 3 | -0.29 | -0.36 | -0.07 | -0.18 | -0.46 | -0.45 | -0.25 | -0.32 | -0.12 | -0.22 | -0.18 | -0.27 | -0.18 | -0.07 | -0.35 | -0.32 | -0.18 | -0.39 |
| 4 | 0.35 | -0.27 | 0.13 | -0.40 | 0.44 | 0.21 | 0.06 | -0.31 | -0.30 | 0.46 | -0.44 | -0.18 | -0.26 | -0.34 | 0.36 | 0.33 | 0.12 | 0.04 |
| 5 | 0.04 | 0.21 | -0.02 | -0.36 | 0.39 | -0.13 | 0.30 | 0.35 | -0.12 | -0.43 | 0.44 | 0.32 | 0.06 | -0.30 | -0.29 | 0.24 | -0.44 | -0.13 |
| 6 | 0.38 | -0.04 | -0.30 | 0.17 | -0.03 | 0.37 | -0.03 | -0.18 | 0.42 | -0.39 | -0.33 | -0.19 | 0.02 | -0.41 | -0.44 | 0.42 | 0.38 | -0.21 |
Monotonic Dense Layer¤
This is an implementation of our Monotonic Dense Unit or Constrained Monotone Fully Connected Layer. The below is the figure from the paper for reference.
In the code, the variable monotonicity_indicator corresponds to t
in the figure and the variable activation_selector corresponds to
s.
Parameters convexity_indicator and epsilon are used to calculate
activation_selector as follows: - if convexity_indicator is -1 or 1,
then activation_selector will have all elements 0 or 1, respecively. -
if convexity_indicator is None, then epsilon must have a value
between 0 and 1 and corresponds to the percentage of elements of
activation_selector set to 1.

MonoDense¤
MonoDense (units:int, activation:Union[str,Callable[[Union[tensorflow.pyt hon.types.core.Tensor,tensorflow.python.types.core.TensorProto col,int,float,bool,str,bytes,complex,tuple,list,numpy.ndarray, numpy.generic]],Union[tensorflow.python.types.core.Tensor,tens orflow.python.types.core.TensorProtocol,int,float,bool,str,byt es,complex,tuple,list,numpy.ndarray,numpy.generic]],NoneType]= None, monotonicity_indicator:Union[numpy.__array_like._Support sArray[numpy.dtype],numpy.__nested_sequence._NestedSequence[nu mpy.__array_like._SupportsArray[numpy.dtype]],bool,int,float,c omplex,str,bytes,numpy.__nested_sequence._NestedSequence[Union [bool,int,float,complex,str,bytes]]]=1, is_convex:bool=False, is_concave:bool=False, activation_weights:Tuple[float,float,float]=(7.0, 7.0, 2.0), **kwargs:Any)
Monotonic counterpart of the regular Dense Layer of tf.keras
This is an implementation of our Monotonic Dense Unit or Constrained Monotone Fully Connected Layer. The below is the figure from the paper for reference.
-
the parameter
monotonicity_indicatorcorresponds to t in the figure below, and -
parameters
is_convex,is_concaveandactivation_weightsare used to calculate the activation selector s as follows: -
if
is_convexoris_concaveis True, then the activation selector s will be (units, 0, 0) and (0,units, 0), respecively. -
if both
is_convexoris_concaveis False, then theactivation_weightsrepresent ratios between \(\breve{s}\), \(\hat{s}\) and \(\tilde{s}\), respecively. E.g. ifactivation_weights = (2, 2, 1)andunits = 10, then

units = 18
activation = "relu"
batch_size = 9
x_len = 11
x = np.random.default_rng(42).normal(size=(batch_size, x_len))
tf.keras.utils.set_random_seed(42)
for monotonicity_indicator in [
[1] * 4 + [0] * 4 + [-1] * 3,
1,
np.ones((x_len,)),
-1,
-np.ones((x_len,)),
]:
print("*" * 120)
mono_layer = MonoDense(
units=units,
activation=activation,
monotonicity_indicator=monotonicity_indicator,
activation_weights=(7, 7, 4),
)
print("input:")
display_kernel(x)
y = mono_layer(x)
print(f"monotonicity_indicator = {monotonicity_indicator}")
display_kernel(mono_layer.monotonicity_indicator)
print("kernel:")
with replace_kernel_using_monotonicity_indicator(
mono_layer, mono_layer.monotonicity_indicator
):
display_kernel(mono_layer.kernel)
print("output:")
display_kernel(y)
print("ok")
************************************************************************************************************************
input:
WARNING:tensorflow:5 out of the last 5 calls to <function apply_activations> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.
monotonicity_indicator = [1, 1, 1, 1, 0, 0, 0, 0, -1, -1, -1]
kernel:
output:
************************************************************************************************************************
input:
monotonicity_indicator = 1
kernel:
output:
************************************************************************************************************************
input:
monotonicity_indicator = [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
kernel:
output:
************************************************************************************************************************
input:
monotonicity_indicator = -1
kernel:
output:
************************************************************************************************************************
input:
monotonicity_indicator = [-1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.]
kernel:
output:
ok
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.30 | -1.04 | 0.75 | 0.94 | -1.95 | -1.30 | 0.13 | -0.32 | -0.02 | -0.85 | 0.88 |
| 1 | 0.78 | 0.07 | 1.13 | 0.47 | -0.86 | 0.37 | -0.96 | 0.88 | -0.05 | -0.18 | -0.68 |
| 2 | 1.22 | -0.15 | -0.43 | -0.35 | 0.53 | 0.37 | 0.41 | 0.43 | 2.14 | -0.41 | -0.51 |
| 3 | -0.81 | 0.62 | 1.13 | -0.11 | -0.84 | -0.82 | 0.65 | 0.74 | 0.54 | -0.67 | 0.23 |
| 4 | 0.12 | 0.22 | 0.87 | 0.22 | 0.68 | 0.07 | 0.29 | 0.63 | -1.46 | -0.32 | -0.47 |
| 5 | -0.64 | -0.28 | 1.49 | -0.87 | 0.97 | -1.68 | -0.33 | 0.16 | 0.59 | 0.71 | 0.79 |
| 6 | -0.35 | -0.46 | 0.86 | -0.19 | -1.28 | -1.13 | -0.92 | 0.50 | 0.14 | 0.69 | -0.43 |
| 7 | 0.16 | 0.63 | -0.31 | 0.46 | -0.66 | -0.36 | -0.38 | -1.20 | 0.49 | -0.47 | 0.01 |
| 8 | 0.48 | 0.45 | 0.67 | -0.10 | -0.42 | -0.08 | -1.69 | -1.45 | -1.32 | -1.00 | 0.40 |
| 0 | |
|---|---|
| 0 | 1.00 |
| 1 | 1.00 |
| 2 | 1.00 |
| 3 | 1.00 |
| 4 | 0.00 |
| 5 | 0.00 |
| 6 | 0.00 |
| 7 | 0.00 |
| 8 | -1.00 |
| 9 | -1.00 |
| 10 | -1.00 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.33 | 0.15 | 0.13 | 0.41 | 0.38 | 0.14 | 0.43 | 0.30 | 0.02 | 0.12 | 0.38 | 0.05 | 0.42 | 0.03 | 0.00 | 0.24 | 0.44 | 0.28 |
| 1 | 0.01 | 0.39 | 0.42 | 0.32 | 0.38 | 0.22 | 0.33 | 0.34 | 0.03 | 0.06 | 0.06 | 0.27 | 0.26 | 0.45 | 0.35 | 0.05 | 0.21 | 0.34 |
| 2 | 0.21 | 0.29 | 0.16 | 0.14 | 0.42 | 0.06 | 0.15 | 0.10 | 0.41 | 0.08 | 0.03 | 0.22 | 0.34 | 0.20 | 0.11 | 0.01 | 0.43 | 0.35 |
| 3 | 0.27 | 0.33 | 0.06 | 0.17 | 0.42 | 0.42 | 0.24 | 0.30 | 0.11 | 0.20 | 0.17 | 0.25 | 0.17 | 0.07 | 0.32 | 0.30 | 0.17 | 0.36 |
| 4 | 0.32 | -0.25 | 0.12 | -0.37 | 0.41 | 0.20 | 0.06 | -0.28 | -0.27 | 0.43 | -0.41 | -0.17 | -0.24 | -0.31 | 0.33 | 0.31 | 0.11 | 0.03 |
| 5 | 0.04 | 0.19 | -0.02 | -0.34 | 0.36 | -0.12 | 0.28 | 0.32 | -0.11 | -0.40 | 0.41 | 0.30 | 0.06 | -0.28 | -0.27 | 0.23 | -0.41 | -0.12 |
| 6 | 0.35 | -0.04 | -0.28 | 0.16 | -0.03 | 0.35 | -0.03 | -0.16 | 0.39 | -0.36 | -0.31 | -0.18 | 0.02 | -0.38 | -0.40 | 0.39 | 0.35 | -0.19 |
| 7 | 0.33 | -0.34 | 0.11 | -0.29 | 0.25 | -0.21 | 0.11 | 0.08 | -0.19 | -0.39 | 0.01 | 0.10 | 0.39 | -0.25 | -0.37 | -0.27 | 0.04 | 0.34 |
| 8 | -0.27 | -0.09 | -0.02 | -0.45 | -0.16 | -0.12 | -0.09 | -0.43 | -0.36 | -0.09 | -0.23 | -0.42 | -0.28 | -0.24 | -0.30 | -0.31 | -0.07 | -0.07 |
| 9 | -0.38 | -0.34 | -0.44 | -0.42 | -0.32 | -0.06 | -0.27 | -0.28 | -0.22 | -0.05 | -0.08 | -0.07 | -0.21 | -0.39 | -0.01 | -0.26 | -0.24 | -0.42 |
| 10 | -0.09 | -0.45 | -0.41 | -0.36 | -0.19 | -0.09 | -0.00 | -0.34 | -0.17 | -0.18 | -0.05 | -0.39 | -0.06 | -0.20 | -0.40 | -0.33 | -0.18 | -0.01 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.01 | 0.40 | 0.00 | 1.38 | 0.00 | 0.10 | 0.00 | -0.00 | -0.00 | -0.13 | -0.00 | -0.26 | -0.00 | -0.00 | -0.55 | -0.52 | 0.79 | 0.64 |
| 1 | 0.45 | 1.02 | 0.96 | 0.71 | 1.22 | 0.00 | 0.86 | -0.00 | -0.00 | -0.09 | -0.00 | -0.00 | -0.00 | -0.00 | 0.26 | -0.17 | 0.54 | 1.00 |
| 2 | 0.30 | 0.00 | 0.33 | 0.00 | 0.41 | 0.00 | 0.42 | -0.53 | -0.89 | -0.29 | -0.23 | -0.84 | -0.16 | -0.93 | -0.90 | 0.08 | 0.37 | 0.08 |
| 3 | 0.21 | 0.26 | 0.33 | 0.42 | 0.00 | 0.00 | 0.00 | -0.16 | -0.00 | -0.61 | -0.53 | -0.07 | -0.00 | -0.00 | -0.55 | -0.66 | 0.83 | 0.78 |
| 4 | 1.38 | 0.49 | 0.70 | 0.82 | 1.47 | 0.54 | 0.63 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.73 | 0.97 | 0.94 | 0.91 |
| 5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -1.86 | -0.25 | -0.00 | -1.57 | -1.19 | -0.61 | -0.23 | 0.13 | -1.00 | 0.50 | -0.06 |
| 6 | 0.00 | 0.00 | 0.00 | 0.17 | 0.00 | 0.00 | 0.00 | -0.15 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.06 | -1.00 | 0.00 | 0.12 |
| 7 | 0.00 | 0.96 | 0.35 | 0.93 | 0.00 | 0.32 | 0.17 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.17 | -0.00 | 0.67 | 0.06 | 0.12 | 0.17 |
| 8 | 0.00 | 1.33 | 0.92 | 1.63 | 0.52 | 0.00 | 0.66 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 1.00 | 0.23 | 0.18 | 0.81 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.30 | -1.04 | 0.75 | 0.94 | -1.95 | -1.30 | 0.13 | -0.32 | -0.02 | -0.85 | 0.88 |
| 1 | 0.78 | 0.07 | 1.13 | 0.47 | -0.86 | 0.37 | -0.96 | 0.88 | -0.05 | -0.18 | -0.68 |
| 2 | 1.22 | -0.15 | -0.43 | -0.35 | 0.53 | 0.37 | 0.41 | 0.43 | 2.14 | -0.41 | -0.51 |
| 3 | -0.81 | 0.62 | 1.13 | -0.11 | -0.84 | -0.82 | 0.65 | 0.74 | 0.54 | -0.67 | 0.23 |
| 4 | 0.12 | 0.22 | 0.87 | 0.22 | 0.68 | 0.07 | 0.29 | 0.63 | -1.46 | -0.32 | -0.47 |
| 5 | -0.64 | -0.28 | 1.49 | -0.87 | 0.97 | -1.68 | -0.33 | 0.16 | 0.59 | 0.71 | 0.79 |
| 6 | -0.35 | -0.46 | 0.86 | -0.19 | -1.28 | -1.13 | -0.92 | 0.50 | 0.14 | 0.69 | -0.43 |
| 7 | 0.16 | 0.63 | -0.31 | 0.46 | -0.66 | -0.36 | -0.38 | -1.20 | 0.49 | -0.47 | 0.01 |
| 8 | 0.48 | 0.45 | 0.67 | -0.10 | -0.42 | -0.08 | -1.69 | -1.45 | -1.32 | -1.00 | 0.40 |
| 0 | |
|---|---|
| 0 | 1.00 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.44 | 0.02 | 0.24 | 0.22 | 0.29 | 0.35 | 0.18 | 0.03 | 0.39 | 0.17 | 0.25 | 0.02 | 0.10 | 0.13 | 0.00 | 0.42 | 0.21 | 0.31 |
| 1 | 0.35 | 0.06 | 0.26 | 0.42 | 0.05 | 0.41 | 0.16 | 0.33 | 0.03 | 0.26 | 0.11 | 0.03 | 0.23 | 0.04 | 0.37 | 0.27 | 0.32 | 0.40 |
| 2 | 0.37 | 0.30 | 0.36 | 0.14 | 0.21 | 0.40 | 0.01 | 0.28 | 0.16 | 0.44 | 0.43 | 0.23 | 0.27 | 0.22 | 0.23 | 0.25 | 0.43 | 0.05 |
| 3 | 0.32 | 0.25 | 0.05 | 0.45 | 0.08 | 0.18 | 0.26 | 0.24 | 0.34 | 0.07 | 0.07 | 0.14 | 0.04 | 0.19 | 0.29 | 0.23 | 0.43 | 0.09 |
| 4 | 0.36 | 0.05 | 0.20 | 0.41 | 0.38 | 0.29 | 0.01 | 0.44 | 0.17 | 0.04 | 0.31 | 0.34 | 0.29 | 0.16 | 0.25 | 0.18 | 0.01 | 0.28 |
| 5 | 0.34 | 0.31 | 0.38 | 0.34 | 0.08 | 0.40 | 0.15 | 0.16 | 0.14 | 0.25 | 0.15 | 0.20 | 0.10 | 0.06 | 0.44 | 0.19 | 0.42 | 0.21 |
| 6 | 0.01 | 0.38 | 0.43 | 0.18 | 0.00 | 0.43 | 0.45 | 0.28 | 0.25 | 0.18 | 0.03 | 0.26 | 0.22 | 0.26 | 0.08 | 0.23 | 0.45 | 0.42 |
| 7 | 0.04 | 0.12 | 0.28 | 0.17 | 0.11 | 0.00 | 0.15 | 0.24 | 0.05 | 0.05 | 0.27 | 0.32 | 0.33 | 0.11 | 0.09 | 0.40 | 0.19 | 0.06 |
| 8 | 0.30 | 0.17 | 0.21 | 0.42 | 0.21 | 0.29 | 0.19 | 0.38 | 0.03 | 0.34 | 0.32 | 0.30 | 0.34 | 0.15 | 0.28 | 0.11 | 0.44 | 0.19 |
| 9 | 0.10 | 0.10 | 0.35 | 0.32 | 0.24 | 0.28 | 0.30 | 0.28 | 0.10 | 0.12 | 0.30 | 0.41 | 0.15 | 0.00 | 0.10 | 0.40 | 0.18 | 0.24 |
| 10 | 0.00 | 0.22 | 0.21 | 0.09 | 0.10 | 0.13 | 0.18 | 0.37 | 0.24 | 0.29 | 0.25 | 0.23 | 0.32 | 0.14 | 0.27 | 0.34 | 0.25 | 0.10 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.93 | -0.00 | -0.07 | -0.58 | -0.88 | -0.58 | -0.00 | -0.87 | -0.49 | -0.05 | -1.00 |
| 1 | 0.73 | 0.10 | 0.22 | 0.18 | 0.18 | 0.16 | 0.00 | -0.23 | -0.00 | -0.00 | -0.00 | -0.09 | -0.00 | -0.00 | 0.16 | 0.47 | 0.53 | -0.27 |
| 2 | 1.15 | 0.36 | 0.82 | 1.20 | 0.80 | 1.06 | 0.61 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.53 | 0.61 | 1.00 | 0.94 |
| 3 | 0.00 | 0.45 | 0.28 | 0.00 | 0.00 | 0.11 | 0.14 | -0.00 | -0.21 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.15 | 0.08 | 0.72 | -0.08 |
| 4 | 0.34 | 0.19 | 0.36 | 0.05 | 0.15 | 0.30 | 0.00 | -0.00 | -0.00 | -0.08 | -0.00 | -0.00 | -0.00 | -0.00 | 0.06 | 0.38 | 0.04 | 0.14 |
| 5 | 0.00 | 0.00 | 0.26 | 0.00 | 0.67 | 0.05 | 0.00 | -0.00 | -0.16 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.08 | 0.30 | -0.17 | -0.17 |
| 6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.76 | -0.68 | -0.28 | -0.11 | -0.37 | -0.42 | -0.40 | -0.88 | -0.41 | -0.67 | -1.00 |
| 7 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.45 | -0.17 | -0.04 | -0.57 | -0.82 | -0.50 | -0.22 | -0.07 | -0.62 | -0.13 | -0.18 |
| 8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -1.32 | -0.35 | -0.39 | -0.77 | -1.63 | -1.12 | -0.60 | -0.47 | -0.99 | -1.00 | -1.00 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.30 | -1.04 | 0.75 | 0.94 | -1.95 | -1.30 | 0.13 | -0.32 | -0.02 | -0.85 | 0.88 |
| 1 | 0.78 | 0.07 | 1.13 | 0.47 | -0.86 | 0.37 | -0.96 | 0.88 | -0.05 | -0.18 | -0.68 |
| 2 | 1.22 | -0.15 | -0.43 | -0.35 | 0.53 | 0.37 | 0.41 | 0.43 | 2.14 | -0.41 | -0.51 |
| 3 | -0.81 | 0.62 | 1.13 | -0.11 | -0.84 | -0.82 | 0.65 | 0.74 | 0.54 | -0.67 | 0.23 |
| 4 | 0.12 | 0.22 | 0.87 | 0.22 | 0.68 | 0.07 | 0.29 | 0.63 | -1.46 | -0.32 | -0.47 |
| 5 | -0.64 | -0.28 | 1.49 | -0.87 | 0.97 | -1.68 | -0.33 | 0.16 | 0.59 | 0.71 | 0.79 |
| 6 | -0.35 | -0.46 | 0.86 | -0.19 | -1.28 | -1.13 | -0.92 | 0.50 | 0.14 | 0.69 | -0.43 |
| 7 | 0.16 | 0.63 | -0.31 | 0.46 | -0.66 | -0.36 | -0.38 | -1.20 | 0.49 | -0.47 | 0.01 |
| 8 | 0.48 | 0.45 | 0.67 | -0.10 | -0.42 | -0.08 | -1.69 | -1.45 | -1.32 | -1.00 | 0.40 |
| 0 | |
|---|---|
| 0 | 1.00 |
| 1 | 1.00 |
| 2 | 1.00 |
| 3 | 1.00 |
| 4 | 1.00 |
| 5 | 1.00 |
| 6 | 1.00 |
| 7 | 1.00 |
| 8 | 1.00 |
| 9 | 1.00 |
| 10 | 1.00 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.31 | 0.02 | 0.11 | 0.29 | 0.10 | 0.33 | 0.37 | 0.06 | 0.39 | 0.35 | 0.15 | 0.13 | 0.15 | 0.45 | 0.07 | 0.19 | 0.03 | 0.06 |
| 1 | 0.12 | 0.02 | 0.06 | 0.41 | 0.32 | 0.24 | 0.34 | 0.28 | 0.22 | 0.06 | 0.33 | 0.27 | 0.25 | 0.23 | 0.43 | 0.09 | 0.45 | 0.27 |
| 2 | 0.19 | 0.11 | 0.19 | 0.25 | 0.07 | 0.42 | 0.32 | 0.35 | 0.15 | 0.05 | 0.00 | 0.24 | 0.22 | 0.39 | 0.44 | 0.11 | 0.19 | 0.10 |
| 3 | 0.15 | 0.37 | 0.21 | 0.41 | 0.25 | 0.04 | 0.37 | 0.04 | 0.05 | 0.22 | 0.31 | 0.35 | 0.35 | 0.08 | 0.38 | 0.01 | 0.25 | 0.29 |
| 4 | 0.17 | 0.45 | 0.24 | 0.32 | 0.01 | 0.00 | 0.19 | 0.34 | 0.17 | 0.19 | 0.18 | 0.34 | 0.02 | 0.24 | 0.03 | 0.41 | 0.26 | 0.00 |
| 5 | 0.29 | 0.10 | 0.07 | 0.34 | 0.04 | 0.30 | 0.39 | 0.27 | 0.39 | 0.16 | 0.33 | 0.45 | 0.06 | 0.19 | 0.23 | 0.04 | 0.36 | 0.04 |
| 6 | 0.13 | 0.15 | 0.22 | 0.40 | 0.14 | 0.30 | 0.11 | 0.45 | 0.14 | 0.17 | 0.26 | 0.16 | 0.36 | 0.10 | 0.17 | 0.32 | 0.14 | 0.08 |
| 7 | 0.25 | 0.25 | 0.24 | 0.45 | 0.17 | 0.45 | 0.30 | 0.35 | 0.41 | 0.40 | 0.11 | 0.26 | 0.32 | 0.08 | 0.22 | 0.34 | 0.05 | 0.09 |
| 8 | 0.16 | 0.27 | 0.10 | 0.23 | 0.08 | 0.21 | 0.19 | 0.16 | 0.06 | 0.04 | 0.17 | 0.05 | 0.39 | 0.11 | 0.26 | 0.25 | 0.13 | 0.05 |
| 9 | 0.17 | 0.17 | 0.00 | 0.13 | 0.12 | 0.03 | 0.39 | 0.11 | 0.01 | 0.29 | 0.43 | 0.20 | 0.21 | 0.43 | 0.39 | 0.18 | 0.19 | 0.27 |
| 10 | 0.26 | 0.23 | 0.43 | 0.04 | 0.25 | 0.36 | 0.21 | 0.36 | 0.37 | 0.36 | 0.08 | 0.14 | 0.25 | 0.24 | 0.30 | 0.33 | 0.04 | 0.07 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | -0.82 | -0.58 | -0.32 | -1.07 | -1.09 | -0.00 | -0.63 | -0.21 | -0.74 | -1.00 | -0.15 |
| 1 | 0.36 | 0.00 | 0.00 | 0.51 | 0.11 | 0.72 | 0.76 | -0.12 | -0.00 | -0.00 | -0.05 | -0.00 | -0.00 | -0.00 | 0.56 | -0.34 | 0.13 | 0.22 |
| 2 | 0.72 | 0.68 | 0.32 | 1.10 | 0.10 | 0.84 | 0.68 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.20 | 0.97 | 0.33 | -0.07 |
| 3 | 0.00 | 0.00 | 0.36 | 0.35 | 0.36 | 0.82 | 0.00 | -0.00 | -0.00 | -0.19 | -0.29 | -0.13 | -0.00 | -0.20 | 0.67 | 0.20 | -0.00 | 0.14 |
| 4 | 0.18 | 0.14 | 0.26 | 0.68 | 0.09 | 0.38 | 0.36 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.07 | -0.00 | 0.14 | 0.15 | 0.33 | 0.10 |
| 5 | 0.01 | 0.55 | 0.50 | 0.00 | 0.00 | 0.21 | 0.00 | -0.00 | -0.27 | -0.00 | -0.44 | -0.25 | -0.00 | -0.00 | 0.44 | 0.83 | -0.24 | -0.01 |
| 6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.89 | -0.85 | -0.48 | -0.77 | -0.90 | -0.21 | -0.30 | -0.09 | -0.69 | -0.83 | -0.03 |
| 7 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | -0.79 | -0.59 | -0.65 | -0.21 | -0.55 | -0.19 | -0.37 | -0.17 | -0.71 | -0.10 | 0.03 |
| 8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -1.24 | -0.48 | -0.95 | -1.13 | -0.71 | -1.40 | -0.30 | -0.76 | -1.00 | -0.47 | -0.39 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.30 | -1.04 | 0.75 | 0.94 | -1.95 | -1.30 | 0.13 | -0.32 | -0.02 | -0.85 | 0.88 |
| 1 | 0.78 | 0.07 | 1.13 | 0.47 | -0.86 | 0.37 | -0.96 | 0.88 | -0.05 | -0.18 | -0.68 |
| 2 | 1.22 | -0.15 | -0.43 | -0.35 | 0.53 | 0.37 | 0.41 | 0.43 | 2.14 | -0.41 | -0.51 |
| 3 | -0.81 | 0.62 | 1.13 | -0.11 | -0.84 | -0.82 | 0.65 | 0.74 | 0.54 | -0.67 | 0.23 |
| 4 | 0.12 | 0.22 | 0.87 | 0.22 | 0.68 | 0.07 | 0.29 | 0.63 | -1.46 | -0.32 | -0.47 |
| 5 | -0.64 | -0.28 | 1.49 | -0.87 | 0.97 | -1.68 | -0.33 | 0.16 | 0.59 | 0.71 | 0.79 |
| 6 | -0.35 | -0.46 | 0.86 | -0.19 | -1.28 | -1.13 | -0.92 | 0.50 | 0.14 | 0.69 | -0.43 |
| 7 | 0.16 | 0.63 | -0.31 | 0.46 | -0.66 | -0.36 | -0.38 | -1.20 | 0.49 | -0.47 | 0.01 |
| 8 | 0.48 | 0.45 | 0.67 | -0.10 | -0.42 | -0.08 | -1.69 | -1.45 | -1.32 | -1.00 | 0.40 |
| 0 | |
|---|---|
| 0 | -1.00 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | -0.29 | -0.12 | -0.00 | -0.17 | -0.33 | -0.17 | -0.33 | -0.36 | -0.28 | -0.16 | -0.24 | -0.22 | -0.10 | -0.13 | -0.02 | -0.38 | -0.23 | -0.02 |
| 1 | -0.36 | -0.13 | -0.05 | -0.07 | -0.41 | -0.30 | -0.38 | -0.06 | -0.40 | -0.42 | -0.44 | -0.03 | -0.27 | -0.03 | -0.32 | -0.31 | -0.35 | -0.40 |
| 2 | -0.30 | -0.07 | -0.40 | -0.06 | -0.10 | -0.21 | -0.16 | -0.22 | -0.06 | -0.36 | -0.40 | -0.42 | -0.23 | -0.22 | -0.20 | -0.33 | -0.45 | -0.06 |
| 3 | -0.05 | -0.08 | -0.07 | -0.30 | -0.44 | -0.23 | -0.40 | -0.25 | -0.13 | -0.31 | -0.11 | -0.13 | -0.13 | -0.34 | -0.15 | -0.05 | -0.36 | -0.13 |
| 4 | -0.45 | -0.34 | -0.41 | -0.39 | -0.15 | -0.10 | -0.40 | -0.32 | -0.19 | -0.13 | -0.29 | -0.39 | -0.43 | -0.29 | -0.13 | -0.05 | -0.39 | -0.01 |
| 5 | -0.09 | -0.38 | -0.00 | -0.12 | -0.07 | -0.42 | -0.01 | -0.12 | -0.26 | -0.28 | -0.16 | -0.06 | -0.08 | -0.43 | -0.23 | -0.28 | -0.28 | -0.07 |
| 6 | -0.34 | -0.38 | -0.15 | -0.44 | -0.41 | -0.19 | -0.25 | -0.41 | -0.34 | -0.22 | -0.43 | -0.36 | -0.25 | -0.28 | -0.06 | -0.12 | -0.15 | -0.16 |
| 7 | -0.17 | -0.39 | -0.40 | -0.26 | -0.40 | -0.20 | -0.10 | -0.14 | -0.42 | -0.21 | -0.18 | -0.25 | -0.15 | -0.21 | -0.13 | -0.41 | -0.14 | -0.14 |
| 8 | -0.38 | -0.03 | -0.10 | -0.21 | -0.13 | -0.04 | -0.19 | -0.00 | -0.09 | -0.38 | -0.01 | -0.27 | -0.24 | -0.24 | -0.13 | -0.18 | -0.37 | -0.21 |
| 9 | -0.43 | -0.08 | -0.20 | -0.29 | -0.10 | -0.27 | -0.08 | -0.43 | -0.22 | -0.37 | -0.27 | -0.24 | -0.15 | -0.22 | -0.01 | -0.45 | -0.35 | -0.31 |
| 10 | -0.38 | -0.44 | -0.20 | -0.31 | -0.42 | -0.23 | -0.03 | -0.31 | -0.11 | -0.35 | -0.01 | -0.00 | -0.00 | -0.39 | -0.45 | -0.14 | -0.03 | -0.10 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1.05 | 0.88 | 0.59 | 0.61 | 0.00 | 0.70 | 0.64 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.24 | 0.74 | 1.00 | 0.55 |
| 1 | 0.27 | 0.26 | 0.00 | 0.41 | 0.00 | 0.00 | 0.00 | -0.00 | -0.23 | -0.33 | -0.21 | -0.20 | -0.00 | -0.02 | -0.04 | -0.82 | -0.52 | -0.02 |
| 2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.36 | -0.77 | -0.71 | -0.39 | -1.00 | -0.82 | -0.67 | -0.11 | -0.74 | -0.97 | -0.31 |
| 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | -0.00 | -0.15 | -0.50 | -0.38 | -0.33 | -0.20 | -0.00 | -0.39 | -0.20 | -0.12 | -0.36 |
| 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.45 | -0.46 | -0.00 | -0.84 | -0.48 | -0.36 | -0.13 | -0.08 | -0.28 | -0.33 | 0.13 |
| 5 | 0.00 | 0.02 | 0.00 | 0.00 | 0.12 | 0.33 | 0.00 | -0.41 | -0.00 | -0.44 | -0.33 | -0.90 | -0.56 | -0.04 | -0.24 | -0.27 | -0.48 | -0.16 |
| 6 | 0.74 | 1.20 | 0.11 | 0.90 | 0.84 | 0.65 | 0.87 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.60 | 0.01 | 0.53 | 0.12 |
| 7 | 0.47 | 0.89 | 0.91 | 0.62 | 0.26 | 0.37 | 0.01 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.07 | 0.61 | 0.29 | 0.01 |
| 8 | 1.30 | 1.17 | 0.98 | 1.61 | 1.09 | 0.59 | 0.65 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.09 | 0.93 | 0.94 | 0.81 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.30 | -1.04 | 0.75 | 0.94 | -1.95 | -1.30 | 0.13 | -0.32 | -0.02 | -0.85 | 0.88 |
| 1 | 0.78 | 0.07 | 1.13 | 0.47 | -0.86 | 0.37 | -0.96 | 0.88 | -0.05 | -0.18 | -0.68 |
| 2 | 1.22 | -0.15 | -0.43 | -0.35 | 0.53 | 0.37 | 0.41 | 0.43 | 2.14 | -0.41 | -0.51 |
| 3 | -0.81 | 0.62 | 1.13 | -0.11 | -0.84 | -0.82 | 0.65 | 0.74 | 0.54 | -0.67 | 0.23 |
| 4 | 0.12 | 0.22 | 0.87 | 0.22 | 0.68 | 0.07 | 0.29 | 0.63 | -1.46 | -0.32 | -0.47 |
| 5 | -0.64 | -0.28 | 1.49 | -0.87 | 0.97 | -1.68 | -0.33 | 0.16 | 0.59 | 0.71 | 0.79 |
| 6 | -0.35 | -0.46 | 0.86 | -0.19 | -1.28 | -1.13 | -0.92 | 0.50 | 0.14 | 0.69 | -0.43 |
| 7 | 0.16 | 0.63 | -0.31 | 0.46 | -0.66 | -0.36 | -0.38 | -1.20 | 0.49 | -0.47 | 0.01 |
| 8 | 0.48 | 0.45 | 0.67 | -0.10 | -0.42 | -0.08 | -1.69 | -1.45 | -1.32 | -1.00 | 0.40 |
| 0 | |
|---|---|
| 0 | -1.00 |
| 1 | -1.00 |
| 2 | -1.00 |
| 3 | -1.00 |
| 4 | -1.00 |
| 5 | -1.00 |
| 6 | -1.00 |
| 7 | -1.00 |
| 8 | -1.00 |
| 9 | -1.00 |
| 10 | -1.00 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | -0.45 | -0.28 | -0.30 | -0.41 | -0.17 | -0.39 | -0.22 | -0.45 | -0.28 | -0.40 | -0.18 | -0.20 | -0.16 | -0.18 | -0.10 | -0.13 | -0.14 | -0.35 |
| 1 | -0.09 | -0.27 | -0.09 | -0.14 | -0.02 | -0.36 | -0.21 | -0.05 | -0.05 | -0.01 | -0.02 | -0.45 | -0.03 | -0.09 | -0.01 | -0.05 | -0.39 | -0.05 |
| 2 | -0.17 | -0.15 | -0.37 | -0.35 | -0.32 | -0.03 | -0.24 | -0.31 | -0.35 | -0.41 | -0.00 | -0.37 | -0.18 | -0.26 | -0.09 | -0.44 | -0.09 | -0.17 |
| 3 | -0.42 | -0.17 | -0.11 | -0.31 | -0.32 | -0.11 | -0.20 | -0.10 | -0.34 | -0.15 | -0.24 | -0.22 | -0.22 | -0.08 | -0.40 | -0.02 | -0.23 | -0.38 |
| 4 | -0.13 | -0.17 | -0.06 | -0.13 | -0.32 | -0.42 | -0.28 | -0.44 | -0.03 | -0.26 | -0.38 | -0.45 | -0.08 | -0.06 | -0.04 | -0.33 | -0.27 | -0.38 |
| 5 | -0.32 | -0.38 | -0.19 | -0.19 | -0.33 | -0.01 | -0.15 | -0.08 | -0.31 | -0.27 | -0.07 | -0.11 | -0.21 | -0.22 | -0.18 | -0.27 | -0.19 | -0.15 |
| 6 | -0.30 | -0.16 | -0.09 | -0.25 | -0.23 | -0.44 | -0.25 | -0.16 | -0.05 | -0.13 | -0.20 | -0.09 | -0.14 | -0.18 | -0.15 | -0.22 | -0.37 | -0.38 |
| 7 | -0.20 | -0.14 | -0.12 | -0.10 | -0.42 | -0.42 | -0.14 | -0.04 | -0.44 | -0.11 | -0.10 | -0.17 | -0.06 | -0.29 | -0.22 | -0.24 | -0.01 | -0.45 |
| 8 | -0.31 | -0.11 | -0.16 | -0.21 | -0.16 | -0.39 | -0.12 | -0.36 | -0.36 | -0.29 | -0.24 | -0.24 | -0.20 | -0.18 | -0.33 | -0.39 | -0.20 | -0.02 |
| 9 | -0.41 | -0.14 | -0.12 | -0.21 | -0.01 | -0.37 | -0.03 | -0.22 | -0.38 | -0.22 | -0.09 | -0.22 | -0.19 | -0.17 | -0.13 | -0.32 | -0.30 | -0.21 |
| 10 | -0.31 | -0.05 | -0.02 | -0.36 | -0.04 | -0.15 | -0.03 | -0.12 | -0.36 | -0.21 | -0.40 | -0.03 | -0.04 | -0.03 | -0.23 | -0.01 | -0.02 | -0.41 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.20 | 0.84 | 0.11 | 0.00 | 0.55 | 1.24 | 0.55 | -0.00 | -0.02 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.20 | 0.98 | 1.00 | 0.30 |
| 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.19 | 0.00 | -0.14 | -0.87 | -0.50 | -0.00 | -0.34 | -0.28 | -0.53 | -0.24 | -0.34 | 0.23 | -0.09 |
| 2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -1.34 | -0.82 | -1.02 | -0.75 | -0.74 | -0.56 | -0.68 | -0.71 | -1.00 | -0.65 | -0.56 |
| 3 | 0.23 | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.27 | -0.00 | -0.00 | -0.21 | -0.00 | -0.28 | -0.21 | -0.24 | 0.02 | 0.00 |
| 4 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.08 | -0.00 | -0.14 | -0.00 | -0.50 | -0.01 | -0.25 | 0.23 | -0.20 | -0.14 | -0.66 |
| 5 | 0.18 | 0.49 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | -0.79 | -0.36 | -0.49 | -0.39 | -0.69 | -0.00 | -0.09 | 0.08 | -0.84 | 0.10 | -0.25 |
| 6 | 0.64 | 0.76 | 0.08 | 0.50 | 0.62 | 0.79 | 0.68 | -0.00 | -0.06 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.28 | 0.24 | 0.86 | 0.87 |
| 7 | 0.32 | 0.24 | 0.23 | 0.18 | 0.76 | 0.62 | 0.28 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.13 | 0.73 | 0.09 | 0.87 |
| 8 | 1.23 | 0.50 | 0.27 | 0.51 | 1.08 | 2.00 | 0.60 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 1.00 | 1.00 | 1.00 | 1.00 |
x = Input(shape=(5, 7, 8))
layer = MonoDense(
units=12,
activation=activation,
monotonicity_indicator=[1] * 3 + [-1] * 3 + [0] * 2,
is_convex=False,
is_concave=False,
)
y = layer(x)
model = Model(inputs=x, outputs=y)
model.summary()
display_kernel(layer.monotonicity_indicator)
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 5, 7, 8)] 0
mono_dense_5 (MonoDense) (None, 5, 7, 12) 108
=================================================================
Total params: 108
Trainable params: 108
Non-trainable params: 0
_________________________________________________________________
| 0 | |
|---|---|
| 0 | 1.00 |
| 1 | 1.00 |
| 2 | 1.00 |
| 3 | -1.00 |
| 4 | -1.00 |
| 5 | -1.00 |
| 6 | 0.00 |
| 7 | 0.00 |
Mono blocks¤
x = Input(shape=(5, 7, 8))
# monotonicity indicator must be broadcastable to input shape, so we use the vector of length 8
monotonicity_indicator = [1] * 3 + [0] * 2 + [-1] * 3
# this mono block has 4 layers with the final one having the shape
mono_block = _create_mono_block(
units=[16] * 3 + [3],
monotonicity_indicator=monotonicity_indicator,
activation="elu",
dropout=0.1,
)
y = mono_block(x)
model = Model(inputs=x, outputs=y)
model.summary()
mono_layers = [layer for layer in model.layers if isinstance(layer, MonoDense)]
assert not (mono_layers[0].monotonicity_indicator == 1).all()
for mono_layer in mono_layers[1:]:
assert (mono_layer.monotonicity_indicator == 1).all()
for mono_layer in mono_layers[:-1]:
assert mono_layer.org_activation == "elu"
assert mono_layers[-1].org_activation == None
Model: "model_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_2 (InputLayer) [(None, 5, 7, 8)] 0
mono_dense_0 (MonoDense) (None, 5, 7, 16) 144
dropout (Dropout) (None, 5, 7, 16) 0
mono_dense_1_increasing (Mo (None, 5, 7, 16) 272
noDense)
dropout_1 (Dropout) (None, 5, 7, 16) 0
mono_dense_2_increasing (Mo (None, 5, 7, 16) 272
noDense)
dropout_2 (Dropout) (None, 5, 7, 16) 0
mono_dense_3_increasing (Mo (None, 5, 7, 3) 51
noDense)
=================================================================
Total params: 739
Trainable params: 739
Non-trainable params: 0
_________________________________________________________________
inputs = Input(name="a", shape=(1,))
param = 0
actual = _prepare_mono_input_n_param(inputs, param)
expected = [inputs], [0], ["inputs"]
assert actual == expected, actual
inputs = Input(name="a", shape=(1,))
param = {"a": 1}
with pytest.raises(ValueError) as e:
actual = _prepare_mono_input_n_param(inputs, param)
e
<ExceptionInfo ValueError("Uncompatible types: type(inputs)=<class 'keras.engine.keras_tensor.KerasTensor'>, type(param)=<class 'dict'>") tblen=2>
a = Input(name="a", shape=(1,))
actual = _prepare_mono_input_n_param({"a": a}, -1)
assert actual == ([a], [-1], ["a"])
a = Input(name="a", shape=(1,))
b = Input(name="b", shape=(1,))
actual = _prepare_mono_input_n_param({"a": a, "b": b}, {"a": -1, "b": 1})
assert actual == ([a, b], [-1, 1], ["a", "b"])
with pytest.raises(ValueError) as e:
actual = _prepare_mono_input_n_param(
{"a": Input(name="a", shape=(1,)), "b": Input(name="b", shape=(1,))}, {"a": -1}
)
e
<ExceptionInfo ValueError("{'a'} != {'b', 'a'}") tblen=2>
a = Input(name="a", shape=(1,))
b = Input(name="b", shape=(1,))
actual = _prepare_mono_input_n_param([a, b], [1, -1])
assert actual == ([a, b], [1, -1], ["0", "1"])
a = Input(name="a", shape=(1,))
b = Input(name="b", shape=(1,))
actual = _prepare_mono_input_n_param([a, b], -1)
assert actual == ([a, b], [-1, -1], ["0", "1"])
monotonicity_indicator = [-1, 0, 1]
is_convex = [True] * 3
is_concave = [False] * 3
names = list("abc")
has_convex, has_concave = _check_convexity_params(
monotonicity_indicator, is_convex, is_concave, names
)
assert (has_convex, has_concave) == (True, False)
Type-1 architecture¤
create_type_1¤
create_type_1 (inputs:Union[tensorflow.python.types.core.Tensor,tensorflo w.python.types.core.TensorProtocol,int,float,bool,str,byte s,complex,tuple,list,numpy.ndarray,numpy.generic,Dict[str, Union[tensorflow.python.types.core.Tensor,tensorflow.pytho n.types.core.TensorProtocol,int,float,bool,str,bytes,compl ex,tuple,list,numpy.ndarray,numpy.generic]],List[Union[ten sorflow.python.types.core.Tensor,tensorflow.python.types.c ore.TensorProtocol,int,float,bool,str,bytes,complex,tuple, list,numpy.ndarray,numpy.generic]]], units:int, final_units:int, activation:Union[str,Callable[[Union[tens orflow.python.types.core.Tensor,tensorflow.python.types.co re.TensorProtocol,int,float,bool,str,bytes,complex,tuple,l ist,numpy.ndarray,numpy.generic]],Union[tensorflow.python. types.core.Tensor,tensorflow.python.types.core.TensorProto col,int,float,bool,str,bytes,complex,tuple,list,numpy.ndar ray,numpy.generic]]], n_layers:int, final_activation:Union [str,Callable[[Union[tensorflow.python.types.core.Tensor,t ensorflow.python.types.core.TensorProtocol,int,float,bool, str,bytes,complex,tuple,list,numpy.ndarray,numpy.generic]] ,Union[tensorflow.python.types.core.Tensor,tensorflow.pyth on.types.core.TensorProtocol,int,float,bool,str,bytes,comp lex,tuple,list,numpy.ndarray,numpy.generic]],NoneType]=Non e, monotonicity_indicator:Union[int,Dict[str,int],List[int ]]=1, is_convex:Union[bool,Dict[str,bool],List[bool]]=False, is_concave:Union[bool,Dict[str,bool],List[bool]]=False, dropout:Optional[float]=None)
Builds Type-1 monotonic network
Type-1 architecture corresponds to the standard MLP type of neural network architecture used in general, where each of the input features is concatenated to form one single input feature vector \(\mathbf{x}\) and fed into the network, with the only difference being that instead of standard fully connected or dense layers, we employ monotonic dense units throughout. For the first (or input layer) layer, the indicator vector \(\mathbf{t}\), is used to identify the monotonicity property of the input feature with respect to the output. Specifically, \(\mathbf{t}\) is set to \(1\) for those components in the input feature vector that are monotonically increasing and is set to \(-1\) for those components that are monotonically decreasing and set to \(0\) if the feature is non-monotonic. For the subsequent hidden layers, monotonic dense units with the indicator vector \(\mathbf{t}\) always being set to \(1\) are used in order to preserve monotonicity. Finally, depending on whether the problem at hand is a regression problem or a classification problem (or even a multi-task problem), an appropriate activation function (such as linear activation or sigmoid or softmax) to obtain the final output.

Args: inputs: input tensor or a dictionary of tensors units: number of units in hidden layers final_units: number of units in the output layer activation: the base activation function n_layers: total number of layers (hidden layers plus the output layer) final_activation: the activation function of the final layer (typicall softmax, sigmoid or linear). If set to None (default value), then the linear activation is used. monotonicity_indicator: if an instance of dictionary, then maps names of input feature to their monotonicity indicator (-1 for monotonically decreasing, 1 for monotonically increasing and 0 otherwise). If int, then all input features are set to the same monotinicity indicator. is_convex: set to True if a particular input feature is convex is_concave: set to True if a particular inputs feature is concave dropout: dropout rate. If set to float greater than 0, Dropout layers are inserted after hidden layers.
Returns: Output tensor
n_layers = 4
inputs = {name: Input(name=name, shape=(1,)) for name in list("abcd")}
outputs = create_type_1(
inputs=inputs,
units=64,
final_units=10,
activation="elu",
n_layers=n_layers,
final_activation="softmax",
monotonicity_indicator=dict(a=1, b=0, c=-1, d=0),
is_convex=True,
dropout=0.1,
)
model = Model(inputs=inputs, outputs=outputs)
model.summary()
mono_layers = [layer for layer in model.layers if isinstance(layer, MonoDense)]
assert len(mono_layers) == n_layers
# check monotonicity indicator
np.testing.assert_array_equal(
mono_layers[0].monotonicity_indicator, np.array([1, 0, -1, 0]).reshape((-1, 1))
)
for i in range(1, n_layers):
assert mono_layers[i].monotonicity_indicator == 1
# check convexity and concavity
for i in range(n_layers):
assert mono_layers[i].is_convex
assert not mono_layers[i].is_concave
Model: "model_2"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
a (InputLayer) [(None, 1)] 0 []
b (InputLayer) [(None, 1)] 0 []
c (InputLayer) [(None, 1)] 0 []
d (InputLayer) [(None, 1)] 0 []
concatenate (Concatenate) (None, 4) 0 ['a[0][0]',
'b[0][0]',
'c[0][0]',
'd[0][0]']
mono_dense_0_convex (MonoDense (None, 64) 320 ['concatenate[0][0]']
)
dropout_3 (Dropout) (None, 64) 0 ['mono_dense_0_convex[0][0]']
mono_dense_1_increasing_convex (None, 64) 4160 ['dropout_3[0][0]']
(MonoDense)
dropout_4 (Dropout) (None, 64) 0 ['mono_dense_1_increasing_convex[
0][0]']
mono_dense_2_increasing_convex (None, 64) 4160 ['dropout_4[0][0]']
(MonoDense)
dropout_5 (Dropout) (None, 64) 0 ['mono_dense_2_increasing_convex[
0][0]']
mono_dense_3_increasing_convex (None, 10) 650 ['dropout_5[0][0]']
(MonoDense)
tf.nn.softmax (TFOpLambda) (None, 10) 0 ['mono_dense_3_increasing_convex[
0][0]']
==================================================================================================
Total params: 9,290
Trainable params: 9,290
Non-trainable params: 0
__________________________________________________________________________________________________
Type-2 architecture¤
monotonicity_indicator = [1, 0, -1]
input_units = 2
monotonicity_indicator = sum(
[[abs(x)] * input_units for x in monotonicity_indicator], []
)
monotonicity_indicator
[1, 1, 0, 0, 1, 1]
create_type_2¤
create_type_2 (inputs:Union[tensorflow.python.types.core.Tensor,tensorflo w.python.types.core.TensorProtocol,int,float,bool,str,byte s,complex,tuple,list,numpy.ndarray,numpy.generic,Dict[str, Union[tensorflow.python.types.core.Tensor,tensorflow.pytho n.types.core.TensorProtocol,int,float,bool,str,bytes,compl ex,tuple,list,numpy.ndarray,numpy.generic]],List[Union[ten sorflow.python.types.core.Tensor,tensorflow.python.types.c ore.TensorProtocol,int,float,bool,str,bytes,complex,tuple, list,numpy.ndarray,numpy.generic]]], input_units:Optional[int]=None, units:int, final_units:int, activation:Union[str,Callable[[Union[tens orflow.python.types.core.Tensor,tensorflow.python.types.co re.TensorProtocol,int,float,bool,str,bytes,complex,tuple,l ist,numpy.ndarray,numpy.generic]],Union[tensorflow.python. types.core.Tensor,tensorflow.python.types.core.TensorProto col,int,float,bool,str,bytes,complex,tuple,list,numpy.ndar ray,numpy.generic]]], n_layers:int, final_activation:Union [str,Callable[[Union[tensorflow.python.types.core.Tensor,t ensorflow.python.types.core.TensorProtocol,int,float,bool, str,bytes,complex,tuple,list,numpy.ndarray,numpy.generic]] ,Union[tensorflow.python.types.core.Tensor,tensorflow.pyth on.types.core.TensorProtocol,int,float,bool,str,bytes,comp lex,tuple,list,numpy.ndarray,numpy.generic]],NoneType]=Non e, monotonicity_indicator:Union[int,Dict[str,int],List[int ]]=1, is_convex:Union[bool,Dict[str,bool],List[bool]]=False, is_concave:Union[bool,Dict[str,bool],List[bool]]=False, dropout:Optional[float]=None)
Builds Type-2 monotonic network
Type-2 architecture is another example of a neural network architecture that can be built employing proposed monotonic dense blocks. The difference when compared to the architecture described above lies in the way input features are fed into the hidden layers of neural network architecture. Instead of concatenating the features directly, this architecture provides flexibility to employ any form of complex feature extractors for the non-monotonic features and use the extracted feature vectors as inputs. Another difference is that each monotonic input is passed through separate monotonic dense units. This provides an advantage since depending on whether the input is completely concave or convex or both, we can adjust the activation selection vector \(\mathbf{s}\) appropriately along with an appropriate value for the indicator vector \(\mathbf{t}\). Thus, each of the monotonic input features has a separate monotonic dense layer associated with it. Thus as the major difference to the above-mentioned architecture, we concatenate the feature vectors instead of concatenating the inputs directly. The subsequent parts of the network are similar to the architecture described above wherein for the rest of the hidden monotonic dense units, the indicator vector \(\mathbf{t}\) is always set to \(1\) to preserve monotonicity.

Args: inputs: input tensor or a dictionary of tensors input_units: used to preprocess features before entering the common mono block units: number of units in hidden layers final_units: number of units in the output layer activation: the base activation function n_layers: total number of layers (hidden layers plus the output layer) final_activation: the activation function of the final layer (typicall softmax, sigmoid or linear). If set to None (default value), then the linear activation is used. monotonicity_indicator: if an instance of dictionary, then maps names of input feature to their monotonicity indicator (-1 for monotonically decreasing, 1 for monotonically increasing and 0 otherwise). If int, then all input features are set to the same monotinicity indicator. is_convex: set to True if a particular input feature is convex is_concave: set to True if a particular inputs feature is concave dropout: dropout rate. If set to float greater than 0, Dropout layers are inserted after hidden layers.
Returns: Output tensor
for dropout in [False, True]:
print("*" * 120)
print()
print(f"{dropout=}")
print()
inputs = {name: Input(name=name, shape=(1,)) for name in list("abcd")}
outputs = create_type_2(
inputs,
units=32,
final_units=10,
activation="elu",
final_activation="softmax",
n_layers=3,
dropout=dropout,
monotonicity_indicator=dict(a=1, b=0, c=-1, d=0),
is_convex=dict(a=True, b=False, c=False, d=False),
is_concave=False,
)
model = Model(inputs=inputs, outputs=outputs)
model.summary()
************************************************************************************************************************
dropout=False
Model: "model_3"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
a (InputLayer) [(None, 1)] 0 []
b (InputLayer) [(None, 1)] 0 []
c (InputLayer) [(None, 1)] 0 []
d (InputLayer) [(None, 1)] 0 []
mono_dense_a_increasing_convex (None, 8) 16 ['a[0][0]']
(MonoDense)
dense_b (Dense) (None, 8) 16 ['b[0][0]']
mono_dense_c_decreasing (MonoD (None, 8) 16 ['c[0][0]']
ense)
dense_d (Dense) (None, 8) 16 ['d[0][0]']
preprocessed_features (Concate (None, 32) 0 ['mono_dense_a_increasing_convex[
nate) 0][0]',
'dense_b[0][0]',
'mono_dense_c_decreasing[0][0]',
'dense_d[0][0]']
mono_dense_0_convex (MonoDense (None, 32) 1056 ['preprocessed_features[0][0]']
)
mono_dense_1_increasing_convex (None, 32) 1056 ['mono_dense_0_convex[0][0]']
(MonoDense)
mono_dense_2_increasing_convex (None, 10) 330 ['mono_dense_1_increasing_convex[
(MonoDense) 0][0]']
tf.nn.softmax_1 (TFOpLambda) (None, 10) 0 ['mono_dense_2_increasing_convex[
0][0]']
==================================================================================================
Total params: 2,506
Trainable params: 2,506
Non-trainable params: 0
__________________________________________________________________________________________________
************************************************************************************************************************
dropout=True
Model: "model_4"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
a (InputLayer) [(None, 1)] 0 []
b (InputLayer) [(None, 1)] 0 []
c (InputLayer) [(None, 1)] 0 []
d (InputLayer) [(None, 1)] 0 []
mono_dense_a_increasing_convex (None, 8) 16 ['a[0][0]']
(MonoDense)
dense_b (Dense) (None, 8) 16 ['b[0][0]']
mono_dense_c_decreasing (MonoD (None, 8) 16 ['c[0][0]']
ense)
dense_d (Dense) (None, 8) 16 ['d[0][0]']
preprocessed_features (Concate (None, 32) 0 ['mono_dense_a_increasing_convex[
nate) 0][0]',
'dense_b[0][0]',
'mono_dense_c_decreasing[0][0]',
'dense_d[0][0]']
mono_dense_0_convex (MonoDense (None, 32) 1056 ['preprocessed_features[0][0]']
)
dropout_6 (Dropout) (None, 32) 0 ['mono_dense_0_convex[0][0]']
mono_dense_1_increasing_convex (None, 32) 1056 ['dropout_6[0][0]']
(MonoDense)
dropout_7 (Dropout) (None, 32) 0 ['mono_dense_1_increasing_convex[
0][0]']
mono_dense_2_increasing_convex (None, 10) 330 ['dropout_7[0][0]']
(MonoDense)
tf.nn.softmax_2 (TFOpLambda) (None, 10) 0 ['mono_dense_2_increasing_convex[
0][0]']
==================================================================================================
Total params: 2,506
Trainable params: 2,506
Non-trainable params: 0
__________________________________________________________________________________________________