create_type_1
airt.keras.layers.create_type_1(inputs: Union[TensorLike, Dict[str, TensorLike], List[TensorLike]], *, units: int, final_units: int, activation: Union[str, Callable[[TensorLike], TensorLike]], n_layers: int, final_activation: Optional[Union[str, Callable[[TensorLike], TensorLike]]] = None, monotonicity_indicator: Union[int, Dict[str, int], List[int]] = 1, is_convex: Union[bool, Dict[str, bool], List[bool]] = False, is_concave: Union[bool, Dict[str, bool], List[bool]] = False, dropout: Optional[float] = None) -> TensorLike
ยค
Builds Type-1 monotonic network
Type-1 architecture corresponds to the standard MLP type of neural network architecture used in general, where each of the input features is concatenated to form one single input feature vector \(\mathbf{x}\) and fed into the network, with the only difference being that instead of standard fully connected or dense layers, we employ monotonic dense units throughout. For the first (or input layer) layer, the indicator vector \(\mathbf{t}\), is used to identify the monotonicity property of the input feature with respect to the output. Specifically, \(\mathbf{t}\) is set to \(1\) for those components in the input feature vector that are monotonically increasing and is set to \(-1\) for those components that are monotonically decreasing and set to \(0\) if the feature is non-monotonic. For the subsequent hidden layers, monotonic dense units with the indicator vector \(\mathbf{t}\) always being set to \(1\) are used in order to preserve monotonicity. Finally, depending on whether the problem at hand is a regression problem or a classification problem (or even a multi-task problem), an appropriate activation function (such as linear activation or sigmoid or softmax) to obtain the final output.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs |
Union[TensorLike, Dict[str, TensorLike], List[TensorLike]]
|
input tensor or a dictionary of tensors |
required |
units |
int
|
number of units in hidden layers |
required |
final_units |
int
|
number of units in the output layer |
required |
activation |
Union[str, Callable[[TensorLike], TensorLike]]
|
the base activation function |
required |
n_layers |
int
|
total number of layers (hidden layers plus the output layer) |
required |
final_activation |
Optional[Union[str, Callable[[TensorLike], TensorLike]]]
|
the activation function of the final layer (typicall softmax, sigmoid or linear). If set to None (default value), then the linear activation is used. |
None
|
monotonicity_indicator |
Union[int, Dict[str, int], List[int]]
|
if an instance of dictionary, then maps names of input feature to their monotonicity indicator (-1 for monotonically decreasing, 1 for monotonically increasing and 0 otherwise). If int, then all input features are set to the same monotinicity indicator. |
1
|
is_convex |
Union[bool, Dict[str, bool], List[bool]]
|
set to True if a particular input feature is convex |
False
|
is_concave |
Union[bool, Dict[str, bool], List[bool]]
|
set to True if a particular inputs feature is concave |
False
|
dropout |
Optional[float]
|
dropout rate. If set to float greater than 0, Dropout layers are inserted after hidden layers. |
None
|
Returns:
Type | Description |
---|---|
TensorLike
|
Output tensor |
Source code in airt/_components/mono_dense_layer.py
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
|