Blog¤
Blog Feedback [1] is a dataset containing 54,270 data points from blog
posts. The raw HTML-documents of the blog posts were crawled and
processed. The prediction task associated with the data is the
prediction of the number of comments in the upcoming 24 hours. The
feature of the dataset has 276 dimensions, and 8 attributes among them
should be monotonically non-decreasing with the prediction. They are
A51, A52, A53, A54, A56, A57, A58, A59. Thus the
monotonicity_indicator
corrsponding to these features are set to 1. As
done in [2], we only use the data points with targets smaller than the
90th percentile.
References:
- Krisztian Buza. Feedback prediction for blogs. In Data analysis, machine learning and knowledge discovery, pages 145–152. Springer, 2014
- Xingchao Liu, Xing Han, Na Zhang, and Qiang Liu. Certified monotonic neural networks. Advances in Neural Information Processing Systems, 33:15427–15438, 2020
monotonicity_indicator = {
f"feature_{i}": 1 if i in range(50, 54) or i in range(55, 59) else 0
for i in range(276)
}
These are a few examples of the dataset:
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
feature_0 | 0.001920 | 0.001920 | 0.000640 | 0.001920 | 0.001920 |
feature_1 | 0.001825 | 0.001825 | 0.001825 | 0.000000 | 0.000000 |
feature_2 | 0.002920 | 0.002920 | 0.000000 | 0.001460 | 0.001460 |
feature_3 | 0.001627 | 0.001627 | 0.000651 | 0.001627 | 0.001627 |
feature_4 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_5 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_6 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_7 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_8 | 0.035901 | 0.035901 | 0.035901 | 0.035901 | 0.035901 |
feature_9 | 0.096250 | 0.096250 | 0.096250 | 0.096250 | 0.096250 |
feature_10 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_11 | 0.196184 | 0.196184 | 0.196184 | 0.196184 | 0.196184 |
feature_12 | 0.011416 | 0.011416 | 0.011416 | 0.011416 | 0.011416 |
feature_13 | 0.035070 | 0.035070 | 0.035070 | 0.035070 | 0.035070 |
feature_14 | 0.090234 | 0.090234 | 0.090234 | 0.090234 | 0.090234 |
feature_15 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_16 | 0.264747 | 0.264747 | 0.264747 | 0.264747 | 0.264747 |
feature_17 | 0.005102 | 0.005102 | 0.005102 | 0.005102 | 0.005102 |
feature_18 | 0.032064 | 0.032064 | 0.032064 | 0.032064 | 0.032064 |
feature_19 | 0.089666 | 0.089666 | 0.089666 | 0.089666 | 0.089666 |
feature_20 | 0.264747 | 0.264747 | 0.264747 | 0.264747 | 0.264747 |
feature_21 | 0.003401 | 0.003401 | 0.003401 | 0.003401 | 0.003401 |
feature_22 | 0.031368 | 0.031368 | 0.031368 | 0.031368 | 0.031368 |
feature_23 | 0.083403 | 0.083403 | 0.083403 | 0.083403 | 0.083403 |
feature_24 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_25 | 0.195652 | 0.195652 | 0.195652 | 0.195652 | 0.195652 |
feature_26 | 0.009302 | 0.009302 | 0.009302 | 0.009302 | 0.009302 |
feature_27 | 0.068459 | 0.068459 | 0.068459 | 0.068459 | 0.068459 |
feature_28 | 0.085496 | 0.085496 | 0.085496 | 0.085496 | 0.085496 |
feature_29 | 0.716561 | 0.716561 | 0.716561 | 0.716561 | 0.716561 |
feature_30 | 0.265120 | 0.265120 | 0.265120 | 0.265120 | 0.265120 |
feature_31 | 0.419453 | 0.419453 | 0.419453 | 0.419453 | 0.419453 |
feature_32 | 0.120206 | 0.120206 | 0.120206 | 0.120206 | 0.120206 |
feature_33 | 0.345656 | 0.345656 | 0.345656 | 0.345656 | 0.345656 |
feature_34 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_35 | 0.366667 | 0.366667 | 0.366667 | 0.366667 | 0.366667 |
feature_36 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_37 | 0.126985 | 0.126985 | 0.126985 | 0.126985 | 0.126985 |
feature_38 | 0.226342 | 0.226342 | 0.226342 | 0.226342 | 0.226342 |
feature_39 | 0.375000 | 0.375000 | 0.375000 | 0.375000 | 0.375000 |
feature_40 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_41 | 0.125853 | 0.125853 | 0.125853 | 0.125853 | 0.125853 |
feature_42 | 0.224422 | 0.224422 | 0.224422 | 0.224422 | 0.224422 |
feature_43 | 0.375000 | 0.375000 | 0.375000 | 0.375000 | 0.375000 |
feature_44 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_45 | 0.114587 | 0.114587 | 0.114587 | 0.114587 | 0.114587 |
feature_46 | 0.343826 | 0.343826 | 0.343826 | 0.343826 | 0.343826 |
feature_47 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_48 | 0.384615 | 0.384615 | 0.384615 | 0.384615 | 0.384615 |
feature_49 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_50 | 0.108675 | 0.108675 | 0.108675 | 0.108675 | 0.108675 |
feature_51 | 0.195570 | 0.195570 | 0.195570 | 0.195570 | 0.195570 |
feature_52 | 0.600000 | 0.600000 | 0.600000 | 0.600000 | 0.600000 |
feature_53 | 0.391304 | 0.391304 | 0.391304 | 0.391304 | 0.391304 |
feature_54 | 0.333333 | 0.333333 | 0.333333 | 0.333333 | 0.333333 |
feature_55 | 0.516725 | 0.516725 | 0.518486 | 0.516725 | 0.516725 |
feature_56 | 0.550000 | 0.550000 | 0.550000 | 0.550000 | 0.550000 |
feature_57 | 0.486111 | 0.486111 | 0.138889 | 0.819444 | 0.819444 |
feature_58 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_59 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_60 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_61 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_62 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_63 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_64 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_65 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_66 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_67 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_68 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_69 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_70 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_71 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_72 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_73 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_74 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_75 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_76 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_77 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_78 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_79 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_80 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_81 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_82 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_83 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_84 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_85 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_86 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_87 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_88 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_89 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_90 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_91 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_92 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_93 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_94 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_95 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_96 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_97 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_98 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_99 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_100 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_101 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_102 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_103 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_104 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_105 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_106 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_107 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_108 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_109 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_110 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_111 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_112 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_113 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_114 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_115 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_116 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_117 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_118 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_119 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_120 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_121 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_122 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_123 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_124 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_125 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_126 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_127 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_128 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_129 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_130 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_131 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_132 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_133 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_134 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_135 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_136 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_137 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_138 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_139 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_140 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_141 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_142 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_143 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_144 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_145 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_146 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_147 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_148 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_149 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_150 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_151 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_152 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_153 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_154 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_155 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_156 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_157 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_158 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_159 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_160 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_161 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_162 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_163 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_164 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_165 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_166 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_167 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_168 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_169 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_170 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_171 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_172 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_173 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_174 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_175 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_176 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_177 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_178 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_179 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_180 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_181 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_182 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_183 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_184 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_185 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_186 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_187 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_188 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_189 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_190 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_191 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_192 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_193 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_194 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_195 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_196 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_197 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_198 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_199 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_200 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_201 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_202 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_203 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_204 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_205 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_206 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_207 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_208 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_209 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_210 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_211 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_212 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_213 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_214 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_215 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_216 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_217 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_218 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_219 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_220 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_221 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_222 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_223 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_224 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_225 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_226 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_227 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_228 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_229 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_230 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_231 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_232 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_233 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_234 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_235 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_236 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_237 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_238 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_239 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_240 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_241 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_242 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_243 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_244 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_245 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_246 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_247 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_248 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_249 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_250 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_251 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_252 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_253 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_254 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_255 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_256 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_257 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_258 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_259 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_260 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_261 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_262 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_263 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 |
feature_264 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 |
feature_265 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_266 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_267 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_268 | 1.000000 | 1.000000 | 0.000000 | 1.000000 | 1.000000 |
feature_269 | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 0.000000 |
feature_270 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_271 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_272 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_273 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_274 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
feature_275 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
ground_truth | 0.000000 | 0.000000 | 0.125000 | 0.000000 | 0.000000 |
Hyperparameter search¤
The choice of the batch size and the maximum number of epochs depends on the dataset size. For this dataset, we use the following values:
batch_size = 256
max_epochs = 30
We use the Type-2 architecture built using
MonoDense
layer with the following set of hyperparameters ranges:
def hp_params_f(hp):
return dict(
units=hp.Int("units", min_value=16, max_value=32, step=1),
n_layers=hp.Int("n_layers", min_value=2, max_value=2),
activation=hp.Choice("activation", values=["elu"]),
learning_rate=hp.Float(
"learning_rate", min_value=1e-4, max_value=1e-2, sampling="log"
),
weight_decay=hp.Float(
"weight_decay", min_value=3e-2, max_value=0.3, sampling="log"
),
dropout=hp.Float("dropout", min_value=0.0, max_value=0.5, sampling="linear"),
decay_rate=hp.Float(
"decay_rate", min_value=0.8, max_value=1.0, sampling="reverse_log"
),
)
The following fixed parameters are used to build the Type-2 architecture for this dataset:
-
final_activation
is used to build the final layer for regression problem (set toNone
) or for the classification problem ("sigmoid"
), -
loss
is used for training regression ("mse"
) or classification ("binary_crossentropy"
) problem, and -
metrics
denotes metrics used to compare with previosly published results:"accuracy"
for classification and “mse
” or “rmse
” for regression.
Parameters objective
and direction
are used by the tuner such that
objective=f"val_{metrics}"
and direction is either "min
or "max"
.
Parameters max_trials
denotes the number of trial performed buy the
tuner, patience
is the number of epochs allowed to perform worst than
the best one before stopping the current trial. The parameter
execution_per_trial
denotes the number of runs before calculating the
results of a trial, it should be set to value greater than 1 for small
datasets that have high variance in results.
final_activation = None
loss = "mse"
metrics = tf.keras.metrics.RootMeanSquaredError()
objective = "val_root_mean_squared_error"
direction = "min"
max_trials = 50
executions_per_trial = 1
patience = 10
The following table describes the best models and their hyperparameters found by the tuner:
The optimal model¤
These are the best hyperparameters found by previous runs of the tuner:
def final_hp_params_f(hp):
return dict(
units=hp.Fixed("units", value=4),
n_layers=hp.Fixed("n_layers", 2),
activation=hp.Fixed("activation", value="elu"),
learning_rate=hp.Fixed("learning_rate", value=0.01),
weight_decay=hp.Fixed("weight_decay", value=0.0),
dropout=hp.Fixed("dropout", value=0.0),
decay_rate=hp.Fixed("decay_rate", value=0.95),
)
The final evaluation of the optimal model:
0 | |
---|---|
units | 4 |
n_layers | 2 |
activation | elu |
learning_rate | 0.010000 |
weight_decay | 0.000000 |
dropout | 0.000000 |
decay_rate | 0.950000 |
val_root_mean_squared_error_mean | 0.154109 |
val_root_mean_squared_error_std | 0.000568 |
val_root_mean_squared_error_min | 0.153669 |
val_root_mean_squared_error_max | 0.154894 |
params | 1665 |